Hervé Corvellec är professor i företagsekonomi vid Lunds universitet. Han talar snabbt och engagerat om cirkulär ekonomi.
Cirkulär ekonomi eller cirkulär utopi
Cirkularitet
Cirkulär ekonomi är populärt både i näringslivet och hos politikerna. Men hur cirkulär kan en ekonomi egentligen bli? Och vad krävs för att nå dit? Miljö & Utveckling har pratat med två forskare.

AdobeStock
Någonting är fel
Du är inloggad som prenumerant hos förlaget Pauser Media, men nånting är fel. På din profilsida ser du vilka av våra produkter som du har tillgång till. Skulle uppgifterna inte stämma på din profilsida – vänligen kontakta vår kundtjänst.
Miljö & Utveckling premium
Läs vidare – starta din prenumeration
- Magasinet Miljö & Utveckling - 6 nummer per år
- Full tillgång till allt digitalt material
Redan prenumerant? Logga in och läs vidare.
– Jag tror att en fullständigt cirkulär ekonomi är en omöjlighet, säger han.
M/bosKbiK6jPSKX2QwH26R0ZYYYsrUOyMSR+Jg0VGXZksMjtcLVFCHVwkAOat/m/Cs961M1ybRb9upA3RAQSJOL6+Wmc/mkfWPZh4NjN2Dz+w/e3bEJW1nOR4c9bCKmCVm2i5Qes4fpp8/RUhbcf8gzT7roRCCjkgGNcT/udrCBu3rlfdesoh+emMEfIDqR+aMEN5Fi2WKRAKxJPSJbeSDRI4Ys9WUq13dM1W6n9dhKdsePxNAy5ZDVffSNfdgVtRGkooV/p80jlRzMHl+xuNLuNNTrsEQtoFCFQGrYjGGfJzvGX74oHpKEUqpfw3S7Sw8FMIYw1gjFs7w+XXk2+eUsjihWUm5QobxHxxYoE71FLCH5UWd/Mnc+gAbJiiYSjsOYlmGjKcdiW2CLZKoJwalOhc3uh8qVBQNtqsfIaufPX8v0tEnjoVOTeLB8j7aLOEpsC4/S0BWvvu2XiMaeLO3v2uWisaQUSKHPsWLk4IBh+9186muXA+0JeIrnl5w1GkUDcKdzKdJ2/iJ4+Ytb0e8wCsrQlJrdrcAR4jau9thH/p8IYLoNf3UEhuZ5tZCcSZNfWZRwJ74MkdwO5H58MVfFO6CsShGqu4sgF0vMTlOSbVhAoeSNvngpTwMNVIOrkDHKsz5MvBanGxPnNkNVat8E2mwGXAvzdSnhQRxoWJW1OoV/PcHAAbj2FLRHgQ7Lv7l7c8nSiTOoF0mWZJogp7FV15q7V6mpmP0syZuvLHcy/UslntIr9Q1PsXOtrMl3vtp8FhPX+cOE75LR3V+oTdwQbKsioHeYNEnxxtEoL+FV8KkhQG8tEyLBMA82ZeztOLp3H3ve0cwTxv7FbooK/qgl2yRYpnxuve74aHcYyYl6NUVxDcdB+RfAKXY5JrITHYpV6Qh0W/Y/vseIbh+a7IjDOGLZo1yeU7qhgqFBahKa5t2FiN5ErZzD2kpQN6b+k8RYCxJ9N5vEaXYgkpVqbr1X8godBeYXFEArgjOfbttT4MFSdiBu/vUHZ9grn/dO8/RC1nGqs9HxOHlH03qoKj5ma9wCj/zrDpyFqh+dw+DciPMlivbn0ydwzsATojBpuBQMRW7+huks01/HT6o7jmE5LN09f654F7M7880UqK9QqJrIioj1+kMvHtIkQL4N1RmzYtLuS4q+EIb6QM2UliAQdACZNSnNc3t4ZEOS26HvGB7HhTpblGzdDi++et3+fZux1oj+62A0mgWA6nnh9I2PkmuF8+zxXOp1ZdprcZEvZfY2Asroa7cBR1BT8TcCQLmuVnhrF2WTG8x6lCOlV9JAv3SBYti/Ij4yAzECkbIjci4X+PQufD1BiqruB7Ka/BNnEZXZTyOrnqnQdXVLzpad14CRiuGB17deoMDAj8d2mq3y+FXMZzu6WX9S1J3D3rFc8HEB0A/GtmEJKOeYPaTTzqOviGMa6A8s43G7CbQP0fsjRtHg/wnyPF8ADZ8tFviEc2DSjPNb2f1/9nd11lYFB2iD2Lwn+4AAI4vSSmdBtTxVJ4uRT0VmaGJIDfgFDyecosZ6qhxE/5OMFMVl2HNiFnWk0fl00zMSJl8b4Qc+G4dkNOc4qnaj5IRN8gPHr0Il6m/agBAFroovd80ql2sqFZnXRZgTYT3biZwSf910fXZ1ZEoh0N8Jrhy/pHTDaYI5nX0zzTdprwdbXJi1OCfo5C4xg1kVWQlma3/uZr05GjnJ2Q+f1OycglrqLqACS43BcYLaSnaUqnrrOmbHDHsrZcn8XJUwbN4/mKRgc6I+Q3AuureqP2kXMyD8s6ClWn3GQZqWQsKDjMIwfNSHrt0xrniHqxlA2c3OMKlMY396gdYfEWXBUS21NeL1tSpXK8buGMF+M2CgvVpmjaaL3iI3L2wU1TyQOP5Wqp5rnbZ9UF/A3pHM51/2/8fBTXvAIcI4XVkfGJqhjfWlX9FgAEA0/Yz/3g3aOvytsm0lQ1gIKnaan3+CEELBgbYp22NMcWUS+eOH5kb5bh/bfQvnPfOp7jEB9c9xPsxfGElP+TG7GTTlp7MOAe1A0ROYBauUtEXKuhsTN6lKn+3PVgv6FA8roR6Dek4SLpby+f6zGy1qIhyeJT18e+jWTgXW6QoG+Cy8v6w4oRtMPN4iOtUsNZjMHuyC8T5/FHNBKPweMVZv9e96kFDS+sxt46dZIadfyyJuDS6kAlFJxfOX0g+l2ac1cwTP7N2qlILHVi8uyd88kFQNijS5Evj0OqWuE+Pz3ZLVh5bRsFwSTybAEd+I6FumXR7t3++HpbeiA9Eiycuvdn0NbKJOQvq4HKLI6iUC8IgBWogkWuMhCcPZFXUDRo3kTlZtkgjn1Hu/Hbeao2PBgRgpQLN7XOiZzN68MXL3ykxnSIj7uaszrdwujVx8+rxyt3fzhVZ1l0AGfBc7qc94lW2s578o7+SZ92/TNf6lLnXLQNSlacjhZF9QwlOcnhxD1RpUWOnIRLo/rPCP7ft8yPmehoDthzvKkZRV2xixhhCQTL799a5+NEtOsEmuQ6gQ0nqZjp+JOpfqJbNavK0crP9jj9dLVATGana5niGJZnbZpbj5974PzXEkpgR1PwLPlLwO3ZDgsCDOjE+oKJj/8VdO9z0v8bk3wq9e4nEGPwAQLxcEnMwu4fpCYPJGocFaU1JN0Uu/VFweGFmAs2b3m99XTZViFfBmG4NgKxZMgWPAo4D/e/QR0/Dk0j7hFDHSnyJmA5PS/oE2tkodFx9uTzPUsFUlN4hIZ4qb72WxaLrTT+z8Jm4yMk5i1m5cMly6AdzJ7utyIQTUiWzgWK8qYj5/oPQiN/5brVTCxTPgcdanK0ZeN2O+Mrb+OA3KO/8gO3FQQKh6u07rWpdGnzLeg8X9PbRiW0SL0B1G2mQMz3nYG6uWAAwkXf7mQi1bMXTTc7FnFz9Rr/tlGhaiC/6xzl3RF8Kc1xNjVRkw97g+X8F+2Mfdwys0NhH8U/bj5wDXPggXvafUW7P+CTnMrFYVfaCzfv0pgDlTO1dUKwTirDXZPNGZaZzcI2Bz/6eRSa2CwuQv48rwTc9pyfJ4yzwF3zw+vvNAZo+ecG+KBQcdmmTvD3pilwXu/5j8Ly4y9oSViqH1aj90PWPCF9Zfdpo7Hr1bO5fS+ygxDaxcQH8ajDONSyMNiz9qMRmFlU4u0+4axPt0LgOLf7eZfhjvRvrrBSB1zylK4K2M1qtsiK3JOs1+CrNAMDKDIcEHwfb4NHITWDU2G/hyVF/1n+igYw5z4Qkd+8pd8A89PmV2ES6s1t8/HA7u8AgFJSu6RgENoOdlmukLtreIt8rEZ7aFfOTc6Ckssij8X/KguIrLLnx225nJFmYRvzWTVQKiqe42iZg9/KPuTPhuh/CqhPmrKR1/N9wraFSgGwvee6UHwYl5S0ND2ndQAITKhAttRvRavuAWYnXGZ7EnjE8Crdo6uc7HaEfvcUkGwEa3lfrKknKzzhjsJ5kDHB+hqxol8qT6Y0lZhXqHPGNxSZIHDf9T4WKZq64ANOOz1pFeRc5zePkqR/q+dW3aHUb6HQxVMfKOBGk/LFVJWsqb9JHlVbcbS/BjyM48R4B3tdxYPfMPBsgZ+pZ/fdC7QO9dhmAHldLP13j8EiptgqoJoGU/IcZxpUmJKv2o0QHcIEww3i/RuPChcyfshWglAoofiRoDUk4bqrcPIVCFW+Ht45PAnNGZYj4XuDv+u0zgiAtzm4Bzpjj3Hdkm0V0kO3JvC4C3VNa7XYAWpQss8dRixyUsXmhUsy2SOVAdErCvPbENOBRCRdz7vSkr6Y4w8JGnnVQbfMFCBaihbQwAbm7yfGzI+GoHAFavCUfWYcFZrmDToesrS6m7xXtyEh/FpnbGkEfzrEVBacfAVt2pLsh1q1lTe9vRMhUjTyz+R0Z6d1yM9GSqFUewNeOx+uB6/JIIZi6+4zpJEh+nCFUHzqlqRj2K1aPRhjl6cNSeQHoPF1kELmgkSB5bbsU1yiUGICGtnN4Anx8myYD5n9Jy30GjjfR85evH4HTSuog53sq+F5ePGTsnc35JBd2zbEUuZOnowXq0ARCvMUI7bKBxeYMQKde/aRejvllGvw89ULSW3+chm8/CKSVCEHYveYJ9+U+kX4B/pKatD9SuNH2p59XSsRSfzZxb3h06cflaSt7h+2l/K/MnrQ3Hpu0Iz1aEGodD8AFBHVJXbvrSkeRcRjsm9lGnRaTf03R5B+vrlxj9s6qZLdZtxxah0SGvnlFPz/6UHg97BFOXkdidQ4Ko4njusBo7TcxAqIK97Q9S0QotFLmhDoMM1XqUg6JUPGnGJ6XErObuBAt9Fhbifirh7GK4U0VKjUHnzajew4Tht03MaamQjR1IbnwEBR/MtXVVGA+ORGjuwK9DiiJM3UgKnOpKCP4O4/OXOQf+sCv0Io5f2jSxsYUC7JlFwCauWy9ejGlZovMdm8+Wcc1gNvwwuJMQ8EpxNbq9wYyJZ7VCbGqoazRawNsuqKpIG6WDCKljj7TRR93WiWi1CUhcpdnV1wSez+NdENvI28pT+tN2EqVwI0YPwRSN77za2NuricOpesoWSUXfLqh5+8kOuwa2wmFSXec6cXJ2GoU3VLsZgnn6aAD0xzJmVTT4lBT4CcBAvQOreXMBTLEix85mtHjhDomnCrc3o2wKr2Q0f92bGrkRyJq2XwG3/GUAYjKIfbvok+bQlpPa4gCWqdb6MmhH7+dCAd8tr3ZRopVfj96tamRAkldYd2gev2qYCPlmTRKAlpNQdlN1XN19RhBw1g7DBfJ3a/yrUTnb1f5rAEtKkbwK5I3GrTpqmIcxAbL4YJuMtwOoqaXU6czeQwJbWY5Ac3emPrzFUGA9m0VJs6I8RERoncNCk6NuXJjQEjqYZ+2x4hy9Vr2OZsvArEiurZD+xnXFufLXrDT1ydA6OYvaDTBrp/1+mHW40zgeZjY4A23aTGJVlflEFY7ja9zkd02iw98oKZ+2OKl+R/c13VklV6pc8fdPjca1SfR51T0NKuW8oo/w8BNIggyCsVT5H6mOxCSNpgPqlZwgN+q5qZXRXmTlFvGZcduKFrrgd04JFW5y4imZdGXvBUrWE+W2draT62cBXztulGPAPqyeyfN1beDjpxH7TB39leKR+Ib8ffmGhuxfoIgUUDBFPPK5u/3Jgs60MhNypc94q2X7GLadS+WhdYkLLmuDoLVdgHiL+Afxrzu4y9UNkigm2UIRu3fcwb9gbh6omAD1WfQCIQ4jUQrhe9tmUCSGMGbk1W9z9R/+9EVg84Io8LgLg7f1lq/grnK2QuHpCWFK0ZeIbREC/DkOTBCDd+eXsc5N8MF5HugTJvwQV4wji03DaqxZ08QNDHygThNHMdQREDdlFzHbusIRgD8XJkRfhlhbd9ABPEvfXnn/6s4GMn2f6/8neaxJZZ9/P1TZZ1g+IzAKW3LXLjheyhuRMadOXJx5tSyi30eRhjGbxA+G94Gl9dG6AxKYlGv4UqYmgo3n/+iEIm2+tO7eiDQguIfrqqGWcncawcBoEypvYmaPqWRjcCH+u0tvTsJuM7sJvemYsbAxgdGdwUFfc/c4VY8lTivMfMudGjNNahBlUTyZZR5FB9GFY3NVmX72v0D7gtstKVaxa5KZu81nHt69NIFNWTSenWTIKSOsSduZ/pebGZ3ryrIMzpjGgFpIXJTuj+jU7pmJG80X9qEBX5rjjqDPglXgCIGINYfB0irg9/z2EqKB7mWvdWODsTQtH+knHhSNQwvw8pabh7gXGlN178Fej2ScwCCb6L0j2Oxwlc48P26rq3dQHr3UHloMjLUd8CkrcTkWcQwOSrebvf1AZk+kXMpbbJy/FJHPx87uN5+6EdgHz2lI8SYRYJtYsp+JWZ1o5CZlamb4qGXRjFhtazdaw9BpE3RmYyhg2dTdR1+YNpxkZKJjEm1lb7vw3puGZeVXPf3g099L/Sy/y5KmRU4gK2Qc+y+o3JM2qtvZXlNUZ3AbDpEGKln1VFZTq7vQgun9TH4cjBz3MpdO2SlahqM+nFgqF7/f9JAm0yM66hiTbIe1FVG1jkyzeLj506cs6C61ZmeC3hbvUs3e7uMv9tGPdmqYHMLZzk6f0hCVt6UjVVWyxXKJ37Gs+X6eAQeN0rael0pkDiG7OTpfIlW5m8UTOxkoYjinl/4uJ4MFqDGaa8pRphZjLzWodKNNAGKh7TM7vLtu2Jrc2mluWz7OYrrKTw0nMJZ2onQBgW7JnimYBFR/NW3fL3Dn19lnuCRcZih0NtZGtLVmNs80QE0ow65/A7hNxt3HGWsteR3j6FAbOF2Rsh2oV5BkeypzTb7A3HKEw4x6eyl40kUscOzyoG+XlIZXrVRjJ7C6RjK8dlZhBj22pnqZ6HPQT/PbhEHFbVg092l/CPahUaZZOkwRZ53uQJEe0vGK4isEEjXunzUiXvDnYW4Fp5AIFmKESd9+itHq+Hhi+MeDTuivy3aRFsoS02yiPaGUJKCk4gleAg/SVwhCKt76giCP2/GElufTFzmJp+MaiPGhdZpQvlrK1cPyczEDFzUl/6/oMofXdG/kq0HKq1UWzMq4RJA6wacX15i4dbwV2W02L6slv5jVTp2TKzoEAZybkYlHDIgIzAWRgfDA1R8yAWWDQrboxFCP+jYjZ9Pq1GqMyqAve4zsy0J4/J1bGpkabEZ8FP7Tm2g73ytupWzXCS8kTxP/IUwEOuBJTnw5139/vA3YjLUDgoPNhmti10euOjKiaM3UueQ/C4Xq0L6+hCCrqQsn8FI6HcrpctAmwu+nCDThgDt2M+F9Qu2VyyiBcdScgmFGTz1zVx17rgcwbN91+sV6h6qcNFzpBGQrRBDfJLonHz//3gs4k/kfU8hFhK+YOFbI58V885kIMnUvRh8ue3IRkHyjx46yxwJHfWi0sriyFdxrSGj33jJAlptKd9DAtlSEmUFN42zwb42vCgfVgtEtJGLztrDnGYPM5KX/nhIlY+3a7/yJ3Gd5GqMeErWnXzpz+R8iLQkWJAyEUHiXw/5hxAJiJO/IeWNX8ygmOqqioM7lV5ftc2VDGQgIyJLlOxgBzAaag8hwllToE2X6VyIsO6l9tVGiVzMiFx/hH5EPkNXm7lCLSTSPgI08AHTDPFLliym+RrpulLAdR5MdwBXYXSAKUTZfEDOcw6v6yAF+KwHVrP3lqlKnmhLtq/d6+MvOgzFbj7Ssw0x3z00k97nSVBOoQKkXq54ktJhqPZiSxKPkPDHZSD8uFk5I8AYERdphrcQX1IHZzQusVVyStGf2Qc9PigwYQw9+wJnbtKIeYVRrXIt2t1TCT5HDzoLCXcUnxt9XKEWZGruniiqB6bkC7OH4Yi6AkxNIZ6UNWM+b9oiNz/uunQ9jiikTRo9F4HciXycz9+du6UZaBBLxRqpzuq7orss2baqtxTcsc4rKrB/MJAeaH2IWQ5wxqs/fAPSCBKqgvZ9otpjCuLDBORVFAljoG+Goulnwg02gJzjPCb5SLxnvXx/03oMxw7HDsMNIkmaqTBB0dlLbD/Yd5bHmRgj55M4Nlut3yg8eEeruB370SAGEL4t348RRxAfRCR4KrUQQpbkDtp+L1P19U+FJ15xda4KHu35cqzibtKlPrPcFXtjOTE4SCfTRo4ANnaY8qPpH/tXXZt5rjoGsMg/bV/eB3cpIRwSW4u4i6OLbDSD3vb5houW4lyav7VVZQ8VLiWW9Cz1FIcjD8XIaiL+0TVomkA91BRouG788+RZBRAZYNHcF37DXW52lvijmao2/Ulc2yt/exIMf/1JKffTxydipxaYNYS1nYrg1N8TJ8yy7mteHeuyOtc9xpGv2ARLKCopTNJ2yp65uabDM0EZyxlSHuItnVZ8S89dGpEHk3zubRFudYohf+pTOWndbE8n/f9pWb1XRTzqBe4q4g34sa8WQtQF2udaorbXrKXG46kqEmLUyc/ZcNVQ08FftmRSM6YPrrDYLCmFehDH1jwdO9eG6WGlLaycmTWHbkHnhfIltNuqZzCoSvsY7E2IUh++15RK2c453mpgj9CSTmXOVzqaxvv+kICHkEMss5mBbx8NkndbghZO1KcqAXCS2+ITJSUiIk5wO9LHFZCFyYjrSbduxWwJWHslXS6MURGg/TOuYMh5MLmkYmaEyM/Lk/QGuqx+GIoHx5rhtRh396EbDW8n4PxC/FZg52ZINeUfI9kGf1FdJunhh+louzlnPzUV/4AiOdN0AegWrY8D1T780YFkarctqq+sAWqnChMnLQCAk+puVe8Ijx3zgBTSPay5PYFv6geIJ4BDIyIuXsH8Jht3rdLXPXUj54jYiQ48LCcaLhWT78xb/iFnPnzn0eyoscKtM5YGbexXJm6MGIUbG6VQZzFvZ6+3VkZVDZ2jUKWRKrr0JTclmKx2VbSIZrvUJwtQAUNNDDqJO6j73+Ljg7wkVtR7m5nBIFCIiV0cTZMZCT6HAQBZnnmUVTXleGp+a9gPAt3QRF+JZtsvASP0agVgaQF1lsDjD5Kas9apMMF3Rvp0Eo4Lym12/8BdGi8c5aONjhCU+XKUnrxRdE7VAxVG9r8caMklVKFf0iaAQdYtJ5LKOQjPBJPmJ0AGUPzYwqIy5yDxpggZIpqvzNRiRu5sfCxd/B8sYwrA8xVhPxcFQOBZgb3Ihux+UFKvCWAv14PgNtDL6Zd3nKxwlEJHeZOZGp/x28iMkDJ/oyb8Y6vG4GjaEBnnMUbDtkzo8ewVNqj2r6j6nqXb9OvNKBenUuaFopU1IkEZh1MkOK5eoVsFLgVPPhQKOHyp03LpMv4a5yonccIL00yt3yAoxdCaO6xD6hENokTnJaa9kOE6hnK+cipJzzYT3U1O7ivnfyhwAgC7LrN4SL/TriFVRaYG/bbT+fn9pGin1g6eVjp1Nb37xdu1lsGIXRt5W2fmROk8BQRpynVS8h43q4/zPFW/OAheEBhcrwII++Y9aYrT8c7VCvJnC+bihSUBGhv9vQo9waH6ptVLx+QcL5/JCYHM5Dr7dDad5F+kH8FYqn7TVi+/tx6SXJRw1xvvQwD9PSv7M0lISrZ2uPIYtX02kIEhfpzo3dlvE2dUd67abZ1AdQSdbTO5z8hMJ6jhpW0ZaGWHRp9OyydhyaCw==


